US009317805B1

a2 United States Patent

Fraenkel

US 9,317,805 B1
Apr. 19, 2016

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEM AND METHOD OF PERFORMING
MODULAR QUANTITATIVE ANALYSIS WITH
NODES THAT HAVE CONTEXTUAL LABELS

(71)
(72)

Applicant: UBS AG, Zurich (CH)
Inventor: Peter N. Fraenkel, New York, NY (US)

(73)

")

Assignee: UBS AG, Zurich (CH)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 190 days.
2D 13/797,646
(22)
(51

(52)

Appl. No.:

Filed: Mar. 12,2013

Int. CL.
GO6N 5/02
U.S. CL
CPC
Field of Classification Search

None

See application file for complete search history.

(2006.01)

GO6N 5/02 (2013.01)

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

5,809,212 A * 9/1998 Shashacocevvenrnenn. 706/46
7,698,343 B2 4/2010 Anderson et al.
8,631,068 Bl 1/2014 Jannink et al.

2003/0229605 Al* 12/2003 Herreraetal. 706/47

2005/0289168 Al* 12/2005
2006/0161814 Al1* 7/2006

Green et al.

Wocke et al. oo, 714126

14

2007/0266144 Al 11/2007 Bollen et al.

2008/0059563 Al 3/2008 Bachmann et al.

2008/0281801 Al 11/2008 Larson et al.

2011/0320496 Al 12/2011 Reid et al.

2012/0109842 Al 5/2012 Bhatt et al.

2012/0130932 Al* 5/2012 Veanesetal. 706/46

2012/0197900 Al 8/2012 Mandre

2012/0304172 Al 11/2012 Greifeneder et al.

2013/0066823 Al* 3/2013 Sweeney etal. 706/50
OTHER PUBLICATIONS

Attificial Intelligence, 27, 1985, pp. 97-109 “Depth-First Iterative-
Deepening: An Optimal Admission Tree Search”.*

Google search.*

Final Office Action issued for U.S. Appl. No. 13/797,472 dated Oct.
6,2015.

Luke et al., “Evolving Graphs and Networks with Edge Encoding:
Preliminary Report,” 1996, Papers of the Genetic Programming, Jul.
1996, pp. 1-8.

* cited by examiner

Primary Examiner — Kakali Chaki

Assistant Examiner — Isidore Sobkowski

(74) Attorney, Agent, or Firm — Pillsbury Winthrop Shaw
Pittman LLP

(57) ABSTRACT

Quantitative analysis is provided through the implementation
of a graph that includes nodes having edges therebetween
representing data dependencies between the nodes. The
nodes include calculation objects such as programs, data,
libraries, and/or other objects. The nodes provide for modular
computation that provides for transparency, record-keeping,
experimentation, and/or other functionalities.

26 Claims, 7 Drawing Sheets

Processor

34
| Node Search Module |/

| Program Execution Module |

| User Interface Module |/

36

| Node Addition Module |/

Client

12

Electronic
Storage

10

| 32 18
e E=|
18
/38

Y
[

—

External
Resource

US 9,317,805 B1

Sheet 1 of 7

Apr. 19,2016

U.S. Patent

1 "Old

]

abeiolg
2luoaD9|g

aounosay |—
[eusoIxg
_ N
_ N
A
oL
mr/
WeD
waD e
ot
wend e
a1

cl
aINPO uoIl opo
_ 1 INPON PPY 8PON
8¢
a|npo uonnasaxy weibo.ud
o| oe””
9INPOW Y24ess 9PON
oed
P = 9INpPO dorlBU| J9SN
A
10SS3201d
"

U.S. Patent Apr. 19,2016 Sheet 2 of 7 US 9,317,805 B1

N ©
3 \ &
P U
3l —{5——8
B | N
/ g
a LL

31

ID5

\
/

ID4

US 9,317,805 B1

Sheet 3 of 7

Apr. 19,2016

U.S. Patent

ov

(

(D) 9al

€ Oid
9¢
)
(€2) eai (22) vai
L
0g Le
(€D 22 “19) Lal
7 (LD) sal
N N e

£t
0c

ve
)

(¥D €D 20 "1O) eal

US 9,317,805 B1

Sheet 4 of 7

Apr. 19,2016

U.S. Patent

9¢

v "Old

0c

/

/ NN,J

(€D) €al (22) vai

(¢2) 9ai
),
ov
ov " v
(gD ‘D) 2ai
),

v

ve

7

.| €020 10) 1 (12) sal
g /
8z \4 62
€e
(¥ ‘€D ‘2D “19) eal

US 9,317,805 B1

Sheet S of 7

Apr. 19,2016

U.S. Patent

_u\./

pauJn}ay/pesse20.d
/PayNUSP| BPON

\—»

G "old

08

unsay
uinlay

8.~

% 09
ydeuir) o} \

apON PPV

Vgl

weJiboud
a1no9xg

i

A
uonod3||09
pue | 8poN
a|qnedwo)
yum s deqg

89

weaboid yum
8poN Ajusp)

29

é
uono9||0d &
pue Q| 8pON uonoajjon
Buiyaen Aypon

A

o

W™
Aonp uono9||o)
aAled9Yy Aypopy
2L

US 9,317,805 B1

Sheet 6 of 7

Apr. 19,2016

U.S. Patent

palsies
10N Aand

é
apop -daqg sj|

9 "Old

oju| pap1dads yum
aiqnedwon aiy -deg

SPON Payiusp|

A
uono9|10d
pue | spoN “deqg

SOA

Buiyosiepy spoN
:-doaqg L 104

v6

ON

uonoa||0n
Ayipop

c6 A
N 4g

SOA

06

sapuapuadag pue oju|
paioadg aaleoay

U.S. Patent

122

/

Modify

Apr. 19,2016

Sheet 7 of 7 US 9,317,805 B1
112
Receive Specified /
Information

Collection

A

Yes

120

Modify

Collection
?

Error/Null

114

Modify Specified /
Information

116

Matching
ID and

Collection
?

118

110

Execute

FIG. 7

US 9,317,805 B1

1
SYSTEM AND METHOD OF PERFORMING
MODULAR QUANTITATIVE ANALYSIS WITH
NODES THAT HAVE CONTEXTUAL LABELS

RELATED APPLICATIONS

This application is related to, and incorporates herein by
reference in its entirety, U.S. patent application Ser. No.
13/797,472, filed Mar. 12, 2013, and entitled “System And
Method Of Performing Modular Quantitative Analysis With
Nodes That Have Temporality.”

FIELD

The disclosure relates to an analytical system and method
that implements a graph comprising script nodes and data
nodes to provide for efficient modular computation.

BACKGROUND

Within the finance industry, the risk management of posi-
tions in derivatives securities provides a technological chal-
lenge. Conventional solutions have focused on providing
powerful enough analytical tools to derive the value of secu-
rities from the prices of the instruments on which they
depend. These solutions have provided mathematical models
for behavior of these prices. Such calculations tend to involve
computational intensive Monte Carlo techniques, and valuing
an individual derivative security may take anywhere from
seconds to hours.

SUMMARY

One aspect of the disclosure relates to a system configured
to perform quantitative analysis. The system may comprise
one or both of non-transitory storage media and/or one or
more processors.

The non-transitory storage media stores a graph compris-
ing nodes used in the performance of calculations, the nodes
including a first node, a second node, and a third node, the
nodes being identified by keys that include node identifiers
and contextual label collections such that the first node is
identified by a first key that includes a first node identifier and
a first contextual label collection, the second node is identi-
fied by a second key that includes a second node identifier and
a second contextual label collection, and the third node is
identified by a third key that includes a third node identifier
and a third contextual label collection. The storage media
further stores dependencies between nodes that indicate spe-
cific nodes used in the creation of other nodes such that,
responsive to the first node being used in the creation of the
second node, the first node is a dependency of the second
node, the dependency of the second node on the first node
being stored to the storage media. Information stored to the
storage media reflects transitive dependencies between nodes
such that, responsive to the third node being used in the
creation of the first node, the third node is a transitive depen-
dency of the second node, the transitive dependency of the
second node on the third node being reflected in the informa-
tion stored to the storage media. The edges in the graph
represent dependencies between the nodes such that an edge
between the first node and the second node represents that the
first node is a dependency of the second node.

The one or more processors are configured to execute
computer program modules. The computer program modules
may include one or more of a node search module configured
to identify nodes that satisfy queries to the graph based on the

20

25

30

35

40

45

50

55

60

65

2

node identifiers and contextual label collections included in
the keys of the nodes such that identification of a node that
satisfies a first query to the graph that includes a specified
node identifier and a specified contextual label collection is
made by: (a) searching for one or more nodes having keys that
include a node identifier that matches the specified node
identifier and a contextual label collection that matches the
specified contextual label collection; (b) responsive to no
nodes having keys meeting the criteria of (a), modifying the
specified contextual label collection in accordance with a
routine to generate a modified contextual label collection; (c)
searching for one or more nodes having keys that include a
node identifier that matches the specified node identifier and
a contextual label collection that matches the modified con-
textual label collection; and (d) responsive to no nodes having
keys meeting the criteria of (c), iterating over (b) and (c) to
generate and search on a further modified contextual label
collection.

Another aspect of the disclosure relates to a computer-
implemented method of performing quantitative analysis,
method being implemented in a computer system that
includes one or more physical processors and non-transitory
storage media. The method comprising: storing, to the stor-
age media, a graph comprising nodes used in the performance
of calculations, the nodes including a first node, a second
node, and a third node, the nodes being identified by keys that
include node identifiers and contextual label collections such
that the first node is identified by a first key that includes a first
node identifier and a first contextual label collection, the
second node is identified by a second key that includes a
second node identifier and a second contextual label collec-
tion, and the third node is identified by a third key that
includes a third node identifier and a third contextual label
collection, storing, to the storage media, dependencies
between nodes that indicate specific nodes used in the cre-
ation of other nodes such that, responsive to the first node
being used in the creation of the second node, the first node is
a dependency of the second node, the dependency of the
second node on the first node being stored to the storage
media, wherein information stored to the storage media
reflects transitive dependencies between nodes such that,
responsive to the third node being used in the creation of the
first node, the third node is a transitive dependency of the
second node, the transitive dependency of the second node on
the third node being reflected in the information stored to the
storage media, wherein edges in the graph represent depen-
dencies between the nodes such that an edge between the first
node and the second node represents that the first node is a
dependency of the second node; and receiving a first query to
the graph, the first query including a specified node identifier
and a specified contextual label collection; identifying a node
that satisfies the first query, wherein such identification of a
node that satisfies the first query to the graph includes: (a)
searching for one or more nodes having keys that include a
node identifier that matches the specified node identifier and
a contextual label collection that matches the specified con-
textual label collection; (b) responsive to no nodes having
keys meeting the criteria of (a), modifying the specified con-
textual label collection in accordance with a routine to gen-
erate a modified contextual label collection; (¢) searching for
one or more nodes having keys that include a node identifier
that matches the specified node identifier and a contextual
label collection that matches the modified contextual label
collection; and (d) responsive to no nodes having keys meet-
ing the criteria of (¢), iterating over (b) and (¢) to generate and
search on a further modified contextual label collection.

US 9,317,805 B1

3

These and other objects, features, and characteristics of the
system and/or method disclosed herein, as well as the meth-
ods of operation and functions of the related elements of
structure and the combination of parts and economies of
manufacture, will become more apparent upon consideration
of the following description and the appended claims with
reference to the accompanying drawings, all of which form a
part of this specification, wherein like reference numerals
designate corresponding parts in the various figures. [tis to be
expressly understood, however, that the drawings are for the
purpose of illustration and description only and are not
intended as a definition of the limits of the invention. As used
in the specification and in the claims, the singular form of “a”,
“an”, and “the” include plural referents unless the context
clearly dictates otherwise.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a system configured to perform quantita-
tive analysis.

FIG. 2 illustrates a graph of nodes for implementation in
quantitative analysis.

FIG. 3 illustrates a graph of nodes for implementation in
quantitative analysis.

FIG. 4 illustrates a graph of nodes for implementation in
quantitative analysis

FIG. 5 illustrates a method of performing quantitative
analysis.

FIG. 6 illustrates a method of checking to confirm that
dependency nodes of a node identified in a query to a graph
are compatible with the query

FIG. 7 illustrates a method of discovering and executing a
program in a node satisfying a query.

DETAILED DESCRIPTION

FIG. 1 illustrates a system 10 configured to perform analy-
sis. System 10 may be configured to manage analytic
resources in a manner that may provide one or more enhance-
ments over conventional analytic systems. Such enhance-
ments may include one or more of performing memoization,
reducing redundancy, providing for efficient deployment of
processing, storage, and/or communication resources, pre-
serving a computational record to facilitate recreation of pre-
viously performed analytics, and/or other enhancements.
System 10 may implement a graph having nodes used in the
performance of calculations, and edges representing relation-
ships between the nodes. The graph may be directed, acyclic,
and/or have other properties. The nodes in the graph may be
updateable, retrievable, and/or have other properties or fea-
tures that enhance operation of system 10. In some imple-
mentations, system 10 may include one or more of electronic
storage 12, one or more processors 14, external resources 16,
one or more client computing platforms 18, and/or other
components.

The various components of system 10 may be configured
for electronic communication therebetween. Such communi-
cation may be accomplished via one or more networks, one or
more direct connections, one or more wireless connections,
one or more wired connections, and/or other electronic com-
munication media. One or more of the components of system
10 may be implemented in a server (not shown). The server
may be in communication with client computing platforms 18
via a client/server architecture to provide access to users of
system 10 via client computing platforms 18.

Electronic storage 12 stores the nodes of the graph. The
nodes are used in the performance of calculations, and

5

10

15

20

25

30

35

40

45

50

55

60

65

4

include calculation objects. A calculation object may include
one or more of a program, a reference to an external resource,
a library, and/or other information to be used and/or to record
the result of a calculation. A program may refer to a set of
information configured to cause one or more processors to
execute commands or instructions specified by the set of
information. A program may be compiled (or may require
compiling), and/or may be uncompiled (e.g., a script and/or
other uncompiled programs). A program may include one or
more of source code, object code, machine code, and/or other
types of code. Data may include information generated by a
previous calculation (e.g., a result of a calculation and/or
other information), information dictated by a market or con-
trolling body (e.g., an interest rate), a statistic, and/or other
information. Data may reflect real world variable at a specific
time, and/or may reflect speculation about what a real world
variable was, is, and/or will be at some time. A reference to an
external resource may specify a location (e.g., a network
location or address) at which the external resource can be
accessed. The reference may cause a query to be generated for
the external resource. The external resource may include one
or more of a program, data, a library, and/or other resources.
A library may include a collection of implementations of
behavior, may be written in terms of a language, may have a
well-defined interface by which the behavior is invoked, and/
or may have other properties. Libraries may differ from pro-
grams in that a library may be organized in such a way that it
can be used by multiple programs which may have no con-
nection to each other, while code that is part of a program is
organized to only be used within that one program.

Nodes in the graph are identified by keys. A key of a node
may include one or more of a node identifier, one or more
parameters, a set of parameter values, a contextual label col-
lection, and/or other information. The contextual label col-
lection includes one or more contextual labels that are speci-
fied for the node at the time that the node is created. The
contextual labels correspond to contexts in which sets of
nodes exist. The contextual labels in the contextual label
collection may be ordered within the contextual label collec-
tion in a manner that dictates how the node is used to satisfy
future queries.

The edges in the graph represent dependencies between the
nodes. The dependencies indicate specific nodes used in the
creation of other nodes. By way of non-limiting example,
FIG. 2 illustrates a graph 20. Graph 20 includes a first node
22, asecond node 24, a third node 26, a fourth node 27, a fifth
node 29, and/or other nodes (not shown in FIG. 2). First node
22 is identified by a first key that includes a first node identi-
fier (ID1). Second node 24 is identified by a second key that
includes a second node identifier (ID2). Third node 26 is
identified by a third key that includes a third node identifier
(ID3). Fourth node 27 is identified by a fourth key that
includes a fourth node identifier (ID4). Fifth node 29 is iden-
tified by a fifth key that includes a fifth node identifier (ID5).
In graph 20, a first edge 28 between first node 22 and second
node 24 represents that first node 22 was used in the creation
of second node 24, making first node 22 a dependency of
second node 24. A second edge 30 between third node 26 and
first node 22 represents that third node 26 was used in the
creation of first node 22, making third node 26 a dependency
of first node 22. A third edge 31 between fourth node 27 and
first node 22 represents that fourth node 27 was used in the
creation of first node 22, making fourth node 27 a dependency
of first node 22. Since second node 24 has a dependency on
first node 22, and first node 22 has a dependency on third node
26 and a dependency on fourth node 27, second node 24 has
a “transitive dependency” on third node 26 (or third node 26

US 9,317,805 B1

5

is a transitive dependency of first node 22), and second node
24 has a transitive dependency on fourth node 27. Fifth node
29 is also a dependency of second node 24, as denoted by a
fourth edge 33.

Although the first node identifier, the second node identi-
fier, the third node identifier, the fourth node identifier, and
the fifth node identifier are represented as having wholly
different values in FIG. 2, this is not intended to be limiting.
Two or more of nodes 22, 24, 26, 27, and/or 29 shown in FIG.
2 may have node identifiers with the same value, or such that
one of the node identifiers is a variant of one of the other node
identifiers. For example, if third node 26 includes a program,
and first node 22 includes a result of a calculation performed
by the program, the third node identifier and the first node
identifier may be the same, or may be variants of each other
that indicate one node includes a program and/or the other
node includes a result of a calculation.

Queries to the graph can be satisfied using nodes including
results of previous calculations by the programs in other
nodes, rather than re-executing the programs. This re-use of
results may reduce duplicative use of processing resources,
communication resources, and/or other resources. The stor-
age of dependencies and transitive dependencies between the
nodes creates a record that reflects not only the relationships
between nodes including programs and nodes including
results of the programs, but also indicates for a given node,
which includes a result of a calculation, all (or substantially
all) of the specific calculation objects (e.g., programs, data,
libraries, etc.) used in the calculation of the result in the given
node. This memoization and record-keeping not only reduces
duplicative use of resources, but also facilitates auditing of
individual results by analysis of dependencies and transitive
dependencies.

Referring back to FIG. 1, electronic storage 12 comprises
non-transitory electronic storage media that electronically
stores information. Electronic storage 12 may include one or
both of system storage that is provided integrally (i.e., sub-
stantially non-removable) with system 10 and/or removable
storage that is removably connectable to system 10 via, for
example, a port (e.g., a USB port, a firewire port, etc.) or a
drive (e.g., a disk drive, etc.). Electronic storage 12 may
include one or more of optically readable storage media (e.g.,
optical disks, etc.), magnetically readable storage media (e.g.,
magnetic tape, magnetic hard drive, floppy drive, etc.), elec-
trical charge-based storage media (e.g., EEPROM, RAM,
etc.), solid-state storage media (e.g., flash drive, etc.), and/or
other electronically readable storage media. Electronic stor-
age 12 may include virtual storage resources, such as storage
resources provided via a cloud and/or a virtual private net-
work. Electronic storage 12 may store software algorithms,
information determined by processor 14, information
received via client computing platforms 18, and/or other
information that enables system 10 to function properly. Elec-
tronic storage 12 may be a separate component within system
10, or electronic storage 12 may be provided integrally with
one or more other components of system 12 (e.g., processor
14).

Processor 14 is configured to provide information process-
ing capabilities within system 10. Processor 14 is configured
to execute one or more of a user interface module 32, a node
search module 34, a program execution module 36, a node
addition module 38, and/or other modules.

User interface module 32 is configured to define a user
interface for presentation to users of system 10. The user
interface provides access to system 10 for the users. The user
interface may include a graphical user interface and/or other
user interfaces presented to the users via client computing

20

40

45

6

platforms 18. The definitions of the user interfaces may be
communicated to client computing platforms 18 from proces-
sor 14. The user interface is configured to receive entry and/or
selection of queries to system 10. The queries may include
one or more of queries for results of calculations performed
by nodes, updates to nodes, and/or other queries. The user
interface is configured to present results of queries. The
results may include results of calculation provided by nodes,
and/or other results.

A query may include specified information that facilitates
identification of a node that corresponds to the query. Speci-
fied information may include information found in the keys of
the nodes. For example, specified information may include
one or more of a node identifier, one or more parameters, one
or more parameter values, a specified contextual label collec-
tion, and/or other information. Specified information may be
used to identify the node(s) that satisfy a query.

Node search module 34 is configured to identify nodes that
satisty queries based on keys identifying the nodes, the values
of the nodes, and/or other information. The values of the
nodes may include one or more of dependencies of the nodes
(and/or keys of the dependencies), transitive dependencies of
the nodes (and/or keys of the transitive dependencies), infor-
mation included in the nodes, and/or other values of the
nodes. For example, referring back to graph 20 in FIG. 2,
identification of second node 24 as satisfying a first query
may be based on the second key and further based on the first
key and the fifth key by virtue of the dependency of second
node 24 on first node 22 and fifth node 29. Such identification
of'second node 24 as satisfying the first query may still further
be based on the third key and the fourth key by virtue of the
transitive dependency of second node 24 on third node 26 and
fourth node 27.

Returning to FIG. 1, node search module 34 may be con-
figured to identify nodes that satisfy queries to the graph
based on the collections of contextual labels included in the
keys. This may include performing searches for nodes having
collections of contextual labels that correspond to a specified
collection of contextual labels in a query in the process of
identifying a node that satisfies the query. A contextual label
collection that corresponds to the specified collection of con-
textual labels may be the same as the specified contextual
label collection, or may be the same as a modified version of
the specified contextual label collections if no suitable nodes
include the full specified contextual label collection. The
specified contextual label collection may be modified to
determine the modified version of the specified contextual
label collection in a pre-determined and/or iterative manner,
as is discussed herein. The implementation of the contextual
label collections may facilitate substitution of various calcu-
lation objects in determining results of calculations without
permanently modifying nodes including the calculation
objects that are being substituted, and/or without requiring
duplication of nodes including calculation objects that are not
being substituted. This may enhance customizability, experi-
mentation, trouble-shooting, recreation of previous calcula-
tions, and/or provide other enhancements. Further descrip-
tion of the manner in which node search module 34 may
search for a node having a contextual label collection that
corresponds to a specified contextual label collection in a
query is provided with respect to the description of FIG. 5,
which appears below.

By way of illustration, FIG. 3 depicts graph 20, in which
the first key includes a first contextual label collection (C1,
C2, C3), the second key includes a second contextual label
collection (C1, C2, C3, C4), the third key includes a third
contextual label collection (C3), the fourth key includes a

US 9,317,805 B1

7

fourth contextual label collection (C2), and the fifth key
includes a fifth contextual label collection (C1). Graph 20 is
further depicted as including a sixth node 40. Sixth node 40 is
identified by a sixth key that includes a sixth node identifier
(ID6) and a sixth contextual label collection (C5). The sixth
node identifier may be the same as the fourth node identifier.
By way of non-limiting example, in graph 20, ifthe first query
includes a specified contextual label collection of (C1, C2,
C3,C4,C5), identification of second node 24 as satisfying the
first query is based on the second contextual label collection
corresponding to the specified contextual label collection in
the first query. Identification of second node 24 as satistying
the first query may be based on the fifth contextual label
collection by virtue of the dependency of second node 24 on
fifth node 29, based on the first contextual label collection by
virtue of the dependency of second node 24 on first node 22,
based on the third contextual label collection by virtue of the
transitive dependency of second node 24 on third node 26,
and/or based on the fourth contextual label collection by
virtue of the transitive dependency of second node 24 on
fourth node 27.

Returning to FIG. 1, node search module 34 may be con-
figured such that upon receipt of a query for results of a
computation, a search is first performed for a node including
the result requested by the query. Responsive to there being
no node including a result that satisfies the query, a search
may be performed for a node including a program configured
to effectuate performance of the computation to produce the
result requested by the query. In some implementations,
nodes including results of computations previously per-
formed may be identified by keys that include node identifiers
that are variants of node identifiers of nodes that include the
programs that produced the results of the computations. In
such implementations, node search module 34 may be con-
figured to first perform search for a node having a node
identifier that matches the specified node identifier from the
query, and then to search a variant of the specified node
identifier for a node including a program that would produce
a result having the specified node identifier.

By way of illustration, returning to FIG. 3, assuming third
node 26 includes a program and that first node 22 includes a
result of a computation performed by the program of third
node 26, the third node identifier may be a variant of the first
node identifier. For example, a second query to graph 20 may
be looking for a result of a calculation performed by the
program included in third node 26 that uses a calculation
object included in sixth node 40, rather than the calculation
object included in fourth node 27, during execution of the
program. To specify this, the second query may include a
specified node identifier that corresponds to the first node
identifier, and a specified contextual label collection of the
second query that corresponds to the sixth contextual label
collection and the third contextual label collection. Such a
specified contextual label collection may include, for
example, (C3, C5). In response to the second query, it may be
determined that none of the nodes in graph 20 satisfies the
second query. Then, the second query may be modified and
graph 20 may be re-searched for the modified query. The
modified query may be configured to request a node having
the program that will generate the result requested in the
second query. This may include modifying the specified node
identifier to the variant of the specified node identifier that
matches the third node identifier. The modified query may be
satisfied by third node 26. However, since third node 26
includes a program, and not a result of a previous computa-
tion, the program may need to be executed to satisfy the
second query, with the generated result providing the result

10

15

20

25

30

35

40

45

50

55

60

65

8

that would satisfy the second query (e.g., using the calcula-
tion object in sixth node 40 instead of the calculation object in
fourth node 27).

Returning to FIG. 1, program execution module 36 is con-
figured to effectuate execution of programs included in nodes.
This may include actually executing the programs, requesting
or managing execution of the programs on a distributed com-
puting system (e.g., a computing grid, and/or other distrib-
uted systems), and/or effectuating execution in other ways.
Program execution module 36 may effectuate execution of a
program included in a node responsive to the node being
identified by node search module 34 as including a program
configured to effectuate computation of a result requested by
a query. The execution of such a program would generate
output from the node including the program that includes the
result requested by the query. Program execution module 36
is further configured such that the output from the node
including the program further includes the dependencies of
the result generated by the program, including a dependency
on the node generating the output, and any other nodes on
which the execution of the program relied.

Node addition module 38 is configured to add nodes to the
graph. This includes adding nodes to the graph including
results generated by the programs in the nodes. For example,
responsive to node search module 34 identifying a node
including a program as satisfying a query, and further respon-
sive to program execution module 36 executing the program
and producing output from the identified node (including the
result requested by the query), node addition module 38 adds
anodeto the graph that includes the output from the identified
node. The newly added node includes the result requested by
the query. Node addition module 38 may also store the depen-
dencies of the newly added node (which are the dependencies
indicated in the output of the identified node), and/or other
information. The key of the newly added node is determined
by node addition module 38 based on one or more of infor-
mation specified in the query, information included in the key
of the node identified by node search module 34, and/or
information included in the keys of dependencies indicated in
the results of the identified node (which are now the depen-
dencies of the newly added node). For example, a node iden-
tifier in the key of the newly added node may match the
specified node identifier in the unmodified second query. A
contextual label collection of the newly added node may be
determined based on the specified contextual label collection
in the second query (e.g., they may match). Other components
of the key of the newly added node may correspond to infor-
mation specified in the second query and/or keys of'its depen-
dencies. These components may include, for example,
parameters, parameter values, and/or other components.

By way of illustration, FIG. 4 depicts graph 20 subsequent
to the second query which was satisfied by third node 26 and
caused the program included in third node 26 to be executed
using the calculation object in sixth node 40. The execution of
the program in third node 26 generates an output from third
node 26 that is added to graph 20 as a seventh node 42.
Seventh node 42 includes the result of the execution of the
program. Seventh node 42 is identified by a seventh key. The
seventh key includes a seventh node identifier (ID7), a sev-
enth contextual label collection (C3, C5), and/or other infor-
mation. The seventh node identifier may be the same as the
first node identifier and/or may be based on the third node
identifier by virtue of seventh node 42 including a result of the
program included in third node 26 (e.g., the third node iden-
tifier may be a variant of the fifth node identifier). A fifth edge
44 in graph 20 represents the dependency of seventh node 42
on third node 26. The seventh contextual label collection may

US 9,317,805 B1

9

be determined based on the specified contextual label collec-
tion. For example, the seventh contextual label collection may
match the specified contextual label collection.

As discussed herein, in some cases, a program, when
executed, generates a further query to graph 20. Such queries
may request, for example, data, a result of a previous compu-
tation, a library (and/or functionality associated therewith),
and/or other calculation objects. For example, in FIG. 4,
execution of the program included in third node 26 generated
a further query that was satisfied by sixth node 40. By virtue
of'the further query satisfied by sixth node 40, and the reliance
of the program in third node 26 on the calculation object in
sixth node 40, seventh node 42 has a dependency on sixth
node 40, which is stored and is reflected in graph 20 as a sixth
edge 46.

Returning to FIG. 1, processor 14 may include one or more
of a digital processor, an analog processor, a digital circuit
designed to process information, an analog circuit designed to
process information, a state machine, and/or other mecha-
nisms for electronically processing information. Although
processor 14 is shown in FIG. 1 as a single entity, this is for
illustrative purposes only. In some implementations, proces-
sor 14 may include a plurality of processing units. These
processing units may be physically located within the same
device, or processor 14 may represent processing functional-
ity of a plurality of devices operating in coordination.

It should be appreciated that although modules 32, 34, 36,
and 38 are illustrated in FIG. 1 as being co-located within a
single processing unit, in implementations in which proces-
sor 14 includes multiple processing units, one or more of
modules 32, 34, 36, and/or 38 may be located remotely from
the other modules. The description of the functionality pro-
vided by the different modules 32, 34, 36, and/or 38 described
below is for illustrative purposes, and is not intended to be
limiting, as any of modules 32, 34, 36, and/or 38 may provide
more or less functionality than is described. For example, one
or more of modules 32, 34, 36, and/or 38 may be eliminated,
and some or all of its functionality may be provided by other
ones of modules 32, 34, 36, and/or 38. As another example,
processor 14 may be configured to execute one or more addi-
tional modules that may perform some or all of the function-
ality attributed below to one of modules 32, 34, 36, and/or 38.

External resources 16 include resources that are external,
physically and/or logically, from the other components of
system 10. This may include resources controlled and/or
operated by an entity separate and/or discrete from an entity
operating and/or using the rest of system 10. However, this is
not intended to be limiting, as the same entity may be oper-
ating and/or using both one or more of the external resources
16 and/or the one or more of the other ones of the components
of system 10. By way of non-limiting example, external
resources 16 may include one or more of an analytics library,
an information source, and/or other resources.

Client computing platforms 18 are configured to provide
access to system 10 for users. Client computing platforms 18
individually include electronic processing, storage, and/or
communication resources to provide such access. Client com-
puting platforms 18 are associated with user interfaces
devices that facilitate presentation to and reception of infor-
mation to and from the users. By way of non-limiting
example, client computing platforms 18 may include one or
more of a desktop computer, a laptop computer, a tablet, a
smartphone, a handheld computer, a personal digital assis-
tant, and/or other computing platforms.

By way of illustration, FIG. 5 depicts a method 60 of
satisfying a query to a graph. The implementation of contex-
tual labels associated with nodes in the graph to identify a

15

30

40

45

10

node that satisfies the query may provide for various enhance-
ments. These may include an ability to recreate previous
analysis (in part or in total), to view analyze different points in
time with different techniques, to update data and/or calcula-
tions previously made, and/or other enhancements. The
operations of method 60 presented below are intended to be
illustrative. In some embodiments, method 60 may be accom-
plished with one or more additional operations not described,
and/or without one or more of the operations discussed. Addi-
tionally, the order in which the operations of method 60 are
illustrated in FIG. 5 and described below is not intended to be
limiting.

At an operation 62, a query is obtained. The query may be
generated based on a user request, by execution of a program,
and/or generated in other ways. The query may include speci-
fied information. The specified information may include one
or more of a specified node identifier, one or more specified
parameters, one or more specified parameter values, a speci-
fied contextual label collection, and/or other specified infor-
mation. Operation 62 may be performed by a node search
module the same as or similar to node search module 34
(shown in FIG. 1 and described herein).

At an operation 64, a determination is made as to whether
there exists a node identified by a key having components that
match certain components of the specified information. For
example, the certain components may include one or more of
a node identifier, a contextual label collection, and/or other
components that match the specified information. Responsive
to no node being identified by a key that includes the certain
components (e.g., a node identifier and a contextual label
collection) that match the specified information, method 60
proceeds to an operation 66. Responsive to identification of a
node identified by a key including the certain components
(e.g., a node identifier and contextual label collection) that
match the specified information, method 60 proceeds to an
operation 68. In some implementations, operation 64 may be
performed by a node search module the same as or similar to
node search module 34 (shown in FIG. 1 and described
herein).

At operation 66, a determination is made as to whether the
specified contextual label collection should be modified in
preparation for another search. This determination may be
based on the contextual labels and/or the number of contex-
tual labels in the specified contextual label collection.
Responsive to a determination at operation 66 that the speci-
fied contextual label collection should not be modified (e.g.,
if there are no modifications or further modifications to be
made), method 60 proceeds to an operation 70. Responsive to
a determination at operation 66 that the specified contextual
label collection should be modified, method 60 proceeds to an
operation 72. In some implementations, operation 66 may be
performed by a node search module the same as or similar to
node search module 34 (shown in FIG. 1 and described
herein).

At operation 72, the specified contextual label collection is
modified, and then method 60 returns to operation 64 for a
search on the modified specified contextual label collection.
The modification may be performed in a deterministic man-
ner. This may mean that the modification(s) performed on the
specified contextual label collection are performed in accor-
dance with a predetermined order or routine as method 60
iterates through operations 64, 66, and 72 until a matching
node is identified at operation 64, or until there are no further
modifications to be performed (e.g., as determined at opera-
tion 66). The modifications to the specified contextual label
collection may be performed in the following order as method
60 iterates through operations 64, 66, and 72: (i) the specified

US 9,317,805 B1

11

contextual label collection is modified to include only a last
contextual label in the specified set of contextual labels, (ii)
the specified contextual label collection is reduced to an
abbreviated contextual label collection from which the last
contextual label has been removed, (iii) the abbreviated con-
textual label collection is modified to include only a last
contextual label in the abbreviated set of contextual labels,
and (iv) modifications (ii) and (iii) are iterated over until there
are no further modifications to be made (e.g., the contextual
label collection can no longer be further abbreviated).

By way of example, for a specified contextual label collec-
tion of (C1, C2, C3, C4), successive iterations through opera-
tion 72 may results in successive queries at operation 64,
assuming no matching node was found for any of the succes-
sive queries, that search for the following contextual label
collections: (C1, C2, C3, C4) (this may be the initial search at
operation 64); (C4); (C1, C2, C3); (C3); (C1, C2); (C2); and
(C1). After a search for the last contextual label collection
(C1), it may be determined at operation 66 that no further
modifications are to be made, and method 60 would proceed
to operation 70. In some implementations, operation 72 may
be performed by a node search module the same as or similar
to node search module 34 (shown in FIG. 1 and described
herein).

At operation 68, a determination is made as to whether the
node identified at operation 64 has dependencies on nodes
with keys that include contextual label collections that are
compatible with the specified contextual label collection in
the query. If the node identified at operation 64 has a depen-
dency, or a transitive dependency, to another node including a
contextual label collection that is not compatible with a speci-
fied contextual label collection, then the node identified at
operation 64 does not satisfy the query, and method 60 pro-
ceeds to operation 70. If the node identified at operation 64
does not have any dependency, or transitive dependency, with
a contextual label collection that is not compatible with the
specified contextual label collection, then method 60 pro-
ceeds to an operation 74. The determination performed at
operation 68 includes checking to make sure that the node
identified at operation 64 does not rely (e.g., through a depen-
dency or transitive dependency) on another node that is not
compatible contextually with the query. In some implemen-
tations, operation 68 may be performed by a node search
module the same as or similar to node search module 34
(shown in FIG. 1 and described herein).

In some implementations, operation 68 includes, for a
given node on which the node identified at operation 64 has a
dependency or transitive dependency, performing a search of
nodes to ensure that there is no node having a key with
components that correspond to components of the key of the
given node, but also has a contextual label collection that
corresponds more closely to the specified contextual label
collection in the query. A first contextual label collection may
be said to correspond more closely to a specified contextual
label collection than a second contextual label collection if
the first contextual label collection would be derived from the
specified contextual label collection through the iterative
modifications made at operation 72 before the second con-
textual label collection would be derived. For instance, with
respect to the exemplary specified contextual label collection
(C1, C2, C3, C4), a contextual label collection (C3) would
correspond more closely to the specified contextual label
collection than a contextual label collection (C1, C2). The
presence of a given node having a key with components that
match the components of a dependency node, but with a
contextual label collection that corresponds more closely to
the specified contextual label collection indicates that the

10

30

40

45

55

12

calculation object in the given node should be used to satisfy
the query with the specified contextual label collection, and
not the dependency node. As such, any result included in a
node having a dependency to the dependency node will need
to be recalculated using the calculation object of the given
node.

At operation 74, the node identified at operation 64 is
further processed and/or returned as satisfying the query
received at operation 62. This may include performing further
examination of the identified node and/or the graph to ensure
compatibility with the original query, using the calculation
object in the identified node in a subsequent calculation,
presenting the calculation object in the identified node as a
result satisfying the query, and/or other actions.

At operation 70, a node is identified that includes a pro-
gram which will generate the result requested by the query.
This identification may include modifying the query to search
for nodes that include programs, and/or other operations.
Responsive to no node being found that satisfies the modified
query, an error message may be generated. In some imple-
mentations, operation 70 may be performed by a node search
module the same as or similar to node search module 34
(shown in FIG. 1 and described herein).

At an operation 76, the program in the node identified at
operation 70 is executed. Execution of the program may
generate one or more additional queries to the graph. The
information specified in the queries may be determined based
on the specified information from the query obtained at
operation 62, the values of the node including the program
being executed, and/or other sources. The execution of the
program generates output from the node. The output includes
the result of the program, a record of the dependencies of the
result produced by the program, and/or other information.
The dependencies of the result produced by the program
include one or more of nodes with calculation objects relied
on by the program in producing the result, the node including
the program that produced the result, and/or other dependen-
cies. In some implementations, operation 76 may be per-
formed by a program execution module the same as or similar
to program execution module 36 (shown in FIG. 1 and
described herein).

At an operation 78, a node is added to the graph that
includes the result of the program executed at operation 76.
Adding the node to the graph includes determining a key of
the node, storing the node, storing the dependencies of the
node (e.g., as indicated in the output of operation 76), and/or
other operations. In some implementations, operation 78 is
performed by a node addition module the same as or similar
to node addition module 38 (shown in FIG. 1 and described
herein).

At an operation 80, the result of the calculation performed
by the program executed at operation 76 is returned as a
response to the query.

FIG. 6 depicts a method 90 of checking to confirm that
dependency nodes of a node identified in a query to a graph
are compatible with the query. In some implementations,
method 90 may be used in operation 68 of method 60 (shown
in FIG. 5 and described herein). However, this is not intended
to be limiting, as method 90 may be used in a variety of
contexts. The operations of method 90 presented below are
intended to be illustrative. In some embodiments, method 90
may be accomplished with one or more additional operations
not described, and/or without one or more of the operations
discussed. Additionally, the order in which the operations of
method 90 are illustrated in FIG. 6 and described below is not
intended to be limiting.

US 9,317,805 B1

13

Atan operation 92, specified information from a query, and
dependency information associated with a node identified as
potentially satisfying the query are received. The specified
information may include, for example, a specified contextual
label collection and/or other specified information from the
query. The dependency information may indicate and/or pro-
vide access to dependencies of the identified node. The
dependency information may indicate and/or provide access
to a full set of transitive dependencies for the identified node.
For example, the dependency information may specify
dependencies of the identified node, dependencies of the
dependencies may be obtained based on this information
(e.g., by accessing dependencies of the nodes on which the
identified node depends), and so on.

Atan operation 94, a search of the graph may be performed
for a node having the full specified contextual label collection
and a node identifier that matches a node identifier of a first
dependency node to which the identified node has a depen-
dency or transitive dependency. If no such node exists,
method 90 proceeds to an operation 96.

At operation 96, the specified contextual label collection is
modified. The modification performed at operation 96 may be
the same as or similar to the modification to contextual label
collection performed at operation 72 (shown in FIG. 5 and
described herein). The modified contextual label collection is
then used in operation 94 to re-search the graph for any node
having anode identifier that matches the node identifier of the
first dependency node, and having a contextual label collec-
tion that matches the modified contextual label collection.
Operations 94 and 96 are iterated in this way until a node is
identified at operation 94 as having a node identifier that
matches the node identifier of the first dependency node, and
having a contextual label collection matching the contextual
label currently being searched (e.g., the specified contextual
label collection or the contextual label collection as modified
at operation 96 one or more times). Upon identification of a
node at operation 94, method 90 proceeds to an operation 98.

At operation 98, a determination is made as to whether the
node identified at operation 94 is the first dependency node. If
the node identified at operation 94 is not the first dependency
node, then there is a node having the same node identifier as
the first dependency node and a contextual label collection
that corresponds more closely to the specified contextual
label collection than the contextual label collection of the first
dependency node. As such, the node that was previously
identified as potentially satisfying the original query does not
actually satisfy the query. If the node identified at operation
94 is the first dependency node, then method 90 proceeds to
an operation 100.

At operation 100, a determination is made as to whether
there are any further nodes on which the node identified as
potentially satisfying the query has a dependency or transitive
dependency. Responsive to there being a further dependency,
for example to a second dependency node, method 90 returns
to operation 94 and iterates over operations 94, 96, and/or 98
for the further dependent node. Response to a determination
at operation 100 that there are not further dependencies to
assess, the node identified as potentially satisfying the query
is confirmed as having dependencies with contextual label
collections that are compatible with the specified contextual
label collection in the original query.

FIG. 7 depicts a method 110 of discovering and executing
a program in a node satistying the query. In some implemen-
tations, method 110 may be used in operation 70 of method 60
(shown in FIG. 5 and described herein). However, this is not
intended to be limiting, as method 110 may be used in a
variety of contexts. The operations of method 110 presented

20

25

30

40

45

55

14

below are intended to be illustrative. In some embodiments,
method 110 may be accomplished with one or more addi-
tional operations not described, and/or without one or more of
the operations discussed. Additionally, the order in which the
operations of method 110 are illustrated in FIG. 7 and
described below is not intended to be limiting.

At an operation 112, specified information from a query is
received. The specified information may include, for
example, a specified node identifier, a specified contextual
label collection and/or other specified information from the
query.

At an operation 114, the specified information may be
modified to search for a node that includes a calculation
object that will produce a result requested by the query, rather
than a node that includes the actual result. This modification
may include one or more of modifying the node identifier,
modifying parameters and/or parameter values included in
the specified information, and/or other modifications.

At an operation 116, a determination is made as to whether
there exists a node identified by a key having components that
match certain components of the specified information, as
modified at operation 114. For example, the certain compo-
nents may include one or more of a node identifier, a contex-
tual label collection, and/or other components that match the
specified information as modified at operation 114. Respon-
sive to no node being identified by a key that includes the
certain components of the specified information (e.g., a node
identifier and a contextual label collection that match the
specified information (as modified)), method 110 proceeds to
an operation 120. Responsive to identification of a node iden-
tified by a key that includes the certain components of the
specified information (e.g., a node identifier and contextual
label collection that match the specified information (as
modified)), method 110 proceeds to an operation 118.

Atoperation 118, a determination is made as to whether the
node identified at operation 116 should be ignored by the
search. This determination is made based on a filter associ-
ated with the program included in the identified node. The
filter may specify whether the program included in the iden-
tified node should be executed when queried with the rest of
the specified information. For example, for a given contextual
label (or contextual label collection), a given parameter (or
collection of parameters), a given parameter value (or collec-
tion of parameter values), other specified information, or
combination of the foregoing, the filter may specify that the
program included in the identified node should be ignored. By
way of example, a program that adjusts the price of all of the
stocks in a particular sector (e.g., technology) may be asso-
ciated with a filter that causes stocks outside of the particular
sector (e.g., non-technology stocks) to be ignored. Respon-
sive to a determination that the node identified at operation
116 should not be ignored, the calculation object in the node
may be provided for execution. Responsive to a determina-
tion that the node identified at operation 116 should be
ignored, method 110 proceeds to operation 120.

At operation 120, a determination is made as to whether the
specified contextual label collection should be modified in
preparation for another search. This determination may be
based on the contextual labels and/or the number of contex-
tual labels in the specified contextual label collection.
Responsive to a determination at operation 120 that the speci-
fied contextual label collection should be modified, method
110 proceeds to an operation 122. Responsive to a determi-
nation at operation 120 that the specified contextual label
collection should not be modified (e.g., if there are no modi-
fications or further modifications to be made), there may not

US 9,317,805 B1

15

be a node that satisfies the query. This may result in an error
message, or some other communication with the user that the
query has not been satisfied.

At operation 122, the specified contextual label collection
is modified. The modification performed at operation 122
may be the same as or similar to the modification to contex-
tual label collection performed at operation 72 (shown in FI1G.
5 and described herein). The modified contextual label col-
lection is then used in operation 116 to re-search the graph for
any node having a node identifier that matches the specified
node identifier (or the modified node identifier), and having a
contextual label collection that matches the modified contex-
tual label collection. Operations 116, 120, and 122 are iter-
ated in this way until a node is identified at operation 116 as
having a matching node identifier, and having a contextual
label collection matching the contextual label currently being
searched (e.g., the specified contextual label collection or the
contextual label collection as modified at operation 122 one
or more times), and that is not ignored at operation 118.

Although the system(s) and/or method(s) of this disclosure
have been described in detail for the purpose of illustration
based on what is currently considered to be the most practical
and preferred implementations, it is to be understood that
such detail is solely for that purpose and that the disclosure is
not limited to the disclosed implementations, but, on the
contrary, is intended to cover modifications and equivalent
arrangements that are within the spirit and scope of the
appended claims. For example, it is to be understood that the
present disclosure contemplates that, to the extent possible,
one or more features of any implementation can be combined
with one or more features of any other implementation.

What is claimed is:
1. A system configured to facilitate performance of quan-
titative analysis, the system comprising:
a computer system comprising one or more processors
programmed to execute one or more computer program
instructions which, when executed, cause the computer
system to:
store, in non-transitory storage media, a graph compris-
ing nodes used in the performance of calculations,
wherein the graph nodes comprise at least one node
representing a calculation object, wherein the graph
nodes are identified by keys that comprise node iden-
tifiers and contextual label collections,

obtain a result calculated using a first calculation object
represented by a first node of the graph nodes,
wherein the first node is identified by a first key that
comprises a first node identifier and a first contextual
label collection;

generate a second key for identifying a second node that
represents the obtained result such that the second key
is generated to include a second node identifier and a
second contextual label collection, wherein the sec-
ond contextual label collection includes one or more
contextual labels of the first contextual label collec-
tion based on the first calculation object being used to
calculate the obtained result;

assign the second key to the second node for identitying
the second node; and

store, in the non-transitory storage media, the second
node as part of the graph.

2. The system of claim 1, wherein the first calculation
object comprises a first previously-calculated result, and the
first node represents the first previously-calculated result, and
wherein the second key is generated such that the second
contextual label collection includes one or more contextual

10

15

20

25

30

40

50

55

60

16

labels of the first contextual label collection based on the first
previously-calculated result being used to calculate the
obtained result.

3. The system of claim 1, wherein the first calculation
object comprises a first program, and the first node represents
the first program, and wherein the second key is generated
such that the second contextual label collection includes one
or more contextual labels of the first contextual label collec-
tion based on the first program being used to calculate the
obtained result.

4. The system of claim 1, wherein the first calculation
object comprises a first library, and the first node represents
the first library, and wherein the second key is generated such
that the second contextual label collection includes one or
more contextual labels of the first contextual label collection
based on the first library being used to calculate the obtained
result.

5. The system of claim 1, wherein the computer system is
further caused to:

obtain a query comprising a specified contextual label col-

lection; and

responsive to the query, effectuate a search of the graph for

anode having a context label collection that matches the
specified contextual label collection.

6. The system of claim 5, wherein the computer system is
further caused to:

responsive to the search failing to identify a node having a

contextual label collection that matches the specified
contextual label collection, modify the specified contex-
tual label collection by removing one or more contextual
labels from the specified contextual label collection; and
effectuate another search of the graph for a node having a
contextual label collection that matches the modified
contextual label collection.
7. The system of claim 6, wherein the search is effectuated
prior to the second key being generated for the second node,
and wherein the computer system is further caused to:
identify the first node based on the first contextual label
collection of the first node matching the modified con-
textual label collection or a further modified version of
the specified contextual label collection; and

responsive to identifying the first node, cause the first cal-
culation object represented by the first node to be used to
calculate the result to satisfy the query.

8. The system of claim 6, wherein the search is effectuated
subsequent to the second key being generated for the second
node, and wherein the computer system is further caused to:

identify the second node based on the second contextual

label collection matching the modified contextual label
collection or a further modified version of the specified
contextual label collection; and

responsive to identifying the second node, provide the

obtained result represented by the second node as a
response to the query.

9. The system of claim 5, wherein edges in the graph
represent dependencies between the graph nodes, wherein a
node of the graph depends from another node when the other
node is used to create the dependent node, and wherein the
search comprises a traversal of the graph based on the depen-
dencies between the graph nodes.

10. The system of claim 9, wherein the computer system is
further caused to:

assign the first node as a dependency of the second node

based on the first calculation object represented by the
first node being used to calculate the obtained result.

11. The system of claim 1, wherein the computer system is
further caused to:

US 9,317,805 B1

17

obtain a query comprising a specified contextual label col-

lection;

responsive to the query, effectuate a search of the graph for

anode having a context label collection that matches the
specified contextual label collection;

identify a third node based on a third contextual label

collection of the third node matching the specified con-
textual label collection or a modified version of the
specified contextual label collection, wherein the third
node represents a program;

responsive to identifying the third node, cause the program

represented by the third node to calculate a result that
satisfies the query; and

provide the result calculated by the program represented by

the third node as a response to the query.

12. The system of claim 1, wherein the second key is
generated to include the second contextual label collection
such that the second context label collection includes all the
contextual labels of the first contextual label collection based
on the first calculation object being used to calculate the
obtained result.

13. The system of claim 1, wherein the first calculation
object comprises a first previously-calculated result, a first
program, or a first library.

14. A computer-implemented method of facilitating per-
formance of quantitative analysis, the method being imple-
mented in a computer system that comprises one or more
processors executing computer program instructions which,
when executed, perform the method, the method comprising:

storing, by the computer system, a graph comprising nodes

used in the performance of calculations, wherein the
graph nodes comprise at least one node representing a
calculation object, and wherein the graph nodes are
identified by keys that comprise node identifiers and
contextual label collections;

obtaining, by the computer system, a result calculated

using a first calculation object represented by a first node
of'the graph nodes, wherein the first node is identified by
afirst key that comprises a first node identifier and a first
contextual label collection;

generating, by the computer system, a second key for iden-

tifying a second node that represents the obtained result
such that the second key is generated to include a second
node identifier and a second contextual label collection,
wherein the second contextual label collection includes
one or more contextual labels of the first contextual label
collection based on the first calculation object being
used to calculate the obtained result;

assigning, by the computer system, the second key to the

second node for identifying the second node; and
storing, by the computer system, the second node as part of
the graph.

15. The method of claim 14, wherein the first calculation
object comprises a first previously-calculated result, and the
first node represents the first previously-calculated result, and
wherein the second key is generated such that the second
contextual label collection includes one or more contextual
labels of the first contextual label collection based on the first
previously-calculated result being used to calculate the
obtained result.

16. The method of claim 14, wherein the first calculation
object comprises a first program, and the first node represents
the first program, and wherein the second key is generated
such that the second contextual label collection includes one
or more contextual labels of the first contextual label collec-
tion based on the first program being used to calculate the
obtained result.

15

20

25

30

40

45

50

55

60

65

18

17. The method of claim 14, wherein the first calculation
object comprises a first library, and the first node represents
the first library, and wherein the second key is generated such
that the second contextual label collection includes one or
more contextual labels of the first contextual label collection
based on the first library being used to calculate the obtained
result.

18. The method of claim 14, further comprising:

obtaining, by the computer system, a query comprising a

specified contextual label collection; and

responsive to the query, effectuating, by the computer sys-

tem, a search of the graph for a node having a context
label collection that matches the specified contextual
label collection.

19. The method of claim 18, further comprising:

responsive to the search failing to identify a node having a

contextual label collection that matches the specified
contextual label collection, modifying, by the computer
system, the specified contextual label collection by
removing one or more contextual labels from the speci-
fied contextual label collection; and

effectuating, by the computer system, another search ofthe

graph for a node having a contextual label collection that
matches the modified contextual label collection.

20. The method of claim 19, wherein the search is effectu-
ated prior to the second key being generated for the second
node, the method further comprising:

identifying, by the computer system, the first node based

on the first contextual label collection of the first node
matching the modified contextual label collection or a
further modified version of the specified contextual label
collection;

responsive to identifying the first node, causing, by the

computer system, the first calculation object represented
by the first node to be used to calculate the result to
satisty the query.

21. The method of claim 19, wherein the search is effectu-
ated subsequent to the second key being generated for the
second node, the method further comprising:

identifying, by the computer system, the second node

based on the second contextual label collection match-
ing the modified contextual label collection or a further
modified version of the specified contextual label col-
lection; and

responsive to identifying the second node, providing, by

the computer system, the obtained result represented by
the second node as a response to the query.

22. The method of claim 18, wherein edges in the graph
represent dependencies between the graph nodes, wherein a
node of the graph depends from another node when the other
node is used to create the dependent node, and wherein the
search comprises a traversal of the graph based on the depen-
dencies between the graph nodes.

23. The method of claim 22, further comprising:

assigning, by the computer system, the first node as a

dependency of the second node based on the first calcu-
lation object represented by the first node being used to
calculate the obtained result.

24. The method of claim 14, further comprising:

obtaining, by the computer system, a query comprising a

specified contextual label collection;

responsive to the query, effectuating, by the computer sys-

tem, a search of the graph for a node having a context
label collection that matches the specified contextual
label collection;

identifying, by the computer system, a third node based on

a third contextual label collection of the third node

US 9,317,805 B1
19

matching the specified contextual label collection or a
modified version of the specified contextual label col-
lection, wherein the third node represents a program;
responsive to identifying the third node, causing, by the
computer system, the program represented by the third 5
node to calculate a result that satisfies the query; and
providing, by the computer system, the result calculated by
the program represented by the third node as a response
to the query.

25. The method of claim 14, wherein the second key is 10
generated to include the second contextual label collection
such that the second context label collection includes all the
contextual labels of the first contextual label collection based
on the first calculation object being used to calculate the
obtained result. 15

26. The method of claim 14, wherein the first calculation
object comprises a first previously-calculated result, a first
program, or a first library.

#* #* #* #* #*

